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Introduction

• Fine-tuning strategy typically relies on backpropagation, which requires transparent 
“white-box” access to the model weights.

• Increasing number of VLMs [1, 7, 8, 28, 29] are not releasing their weights due to 
privacy and legal concerns [30, 31].

• We propose employing chat-based LLMs as black-box optimizers to search for the 
best text prompt.

• We begin with random prompts, assess their one-shot training accuracy, and then 
iteratively ask ChatGPT to refine them based on the best and worst outcomes.
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Introduction

• We find that LLMs discern between good and bad prompts and utilize the implicit 
“gradient” in language for more efficient searches.

Contributions: 

- We introduce a novel method for black-box prompt engineering of VLMs, utilizing 
an LLM as an optimizer.

- We extensively explore various strategies for conversing with ChatGPT, 
uncovering several key factors that significantly enhance the efficiency of this tool.

- Our natural language prompts are interpretable and transfer better across CLIP 
architectures than previous white-box methods.
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LLMs for prompt optimization

DCLIP [5]

- uses GPT3 to produce rich visual descriptions to improve zero-shot classification 
with CLIP [4].

APE [36]

- uses an LLM to optimize prompts for another LLM through instruction induction 
[78] and iterative Monte Carlo search, which involves paraphrasing the current 
prompt.

[4] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. 

Learning transferable visual models from natural language supervision. In International conference on machine learning, pages 8748–8763. PMLR, 2021. 

[5] Sachit Menon and Carl Vondrick. Visual classification via description from large language models. arXiv preprint arXiv:2210.07183, 2022.

[36] Yongchao Zhou, Andrei Ioan Muresanu, Ziwen Han, Keiran Paster, Silviu Pitis, Harris Chan, and Jimmy Ba. Large language models are human-level prompt engineers. 

arXiv preprint arXiv:2211.01910, 2022.

[78] Or Honovich, Uri Shaham, Samuel R Bowman, and Omer Levy. Instruction induction: From few examples to natural language task descriptions. arXiv preprint 

arXiv:2205.10782, 2022.

7



Related Work

Few-shot adaptation of VLMs
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General prompt engineering framework
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Method

Leveraging LLMs as prompt engineers (prior art)
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Method
Conversational prompting with chat-based LLMs (our approach)
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Illustrative Task: Few-Shot Image Classification

Experimental setup

- We apply our method to the few-shot image classification benchmark from CoOp
[3]

- Covered 11 datasets, including notable ones like ImageNet [13]

- Followed the three-fold k-shot training approach from [23]

- Utilize CLIP and ChatGPT(GPT3.5) for black-box VLM and conversational 
prompting
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Illustrative Task

Implementation details

- Sampled 1M captions from LAION-COCO [25]

- Extracted noun phrases using spaCy part-of speech tagging [89]

- Replaced one noun phrase with “{}” to create template

- Initial prompt pool: ~2M templates (2 noun phrases on average per cation)

- Algorithm parameters: 20 restarts, 50 resets, 10 iterations

- Sampled 80 prompts per restart.

- Presented top and bottom 15 prompts to ChatGPT

- Used CLIP-RN50 for experiments as per prior work [3, 23]
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Illustrative Task

Previous white-box baselines: 

CoOp [3], WiSE-FT [37], Cross-Modal Adaptation [23], DCLIP [5]

Other black-box baselines: 

- Including the vanilla class-agnostic templates “{classname}” and “a photo of a 
{classname}”

- Best Hand-Engineered templates released by OpenAI, eg., “a centered satellite 
photo of {classname}.” for EuroSAT [17]

- Iterative APE [36], we use 30 positive prompts for our APE implementation.
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Additional Analysis

Balancing exploration and exploitation can improve the final performance

- fixed budget: 500 API calls per restart 
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Additional Analysis
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Additional Analysis
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Table 3: Black-box transferring prompts from ResNet-50 to other CLIP 

architectures on 16-shot ImageNet



Conclusion

• We introduce a method using LLMs to engineer prompts for black-box VLMs.

• Our approach integrates a conversational feedback loop with chat-based LLMs.

• In one-shot image classification, we outperform many black-box techniques and 
compete with white-box methods. 

• Our method produces prompts that are more universally applicable across 
different black-box VLMs.
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